

Natural Language Can Help Bridge the Sim2Real Gap

Albert Yu, Adeline Foote, Ray Mooney, Roberto Martín-Martín University of Texas at Austin | albertyu@utexas.edu

Problem Statement

- Collecting real world data is costly. Simulators can cheaply generate abundant data.
- To use sim data to train real world policies, we need to overcome the sim2real gap.
- Common approaches to do so (domain rand., manual sys. ID) are expensive & tedious.
- Can we instead improve sim2real transfer by leveraging natural language to learn domain-invariant visual representations?

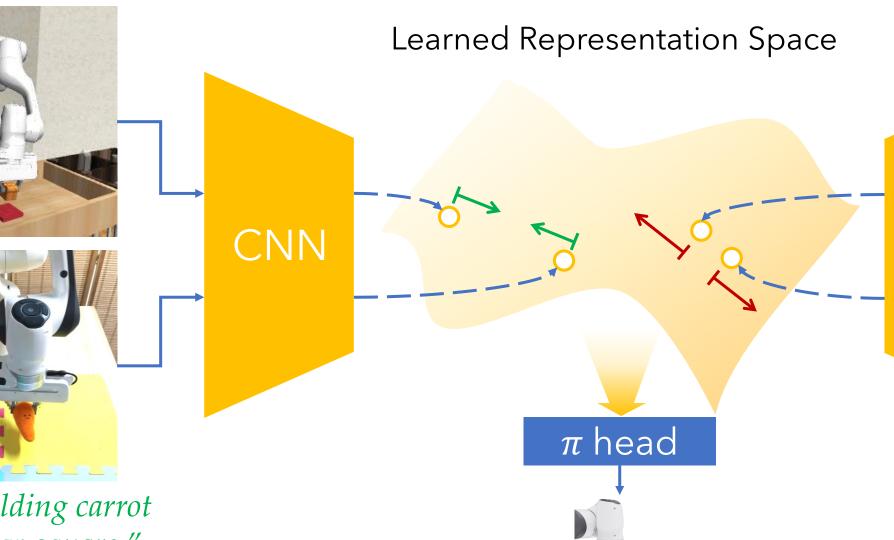
Insight: Semantically Similar Images → Similar Actions

Language Links Sim+Real Visual Features via Semantic Similarity, Improving Sim2Real Transfer with Visuomotor Policies

Push together/Pull apart representations of sim and real images with **Similar/Different** language descriptions

"gripper holding bread" above coaster."

"gripper holding milk next to coaster."



CNN

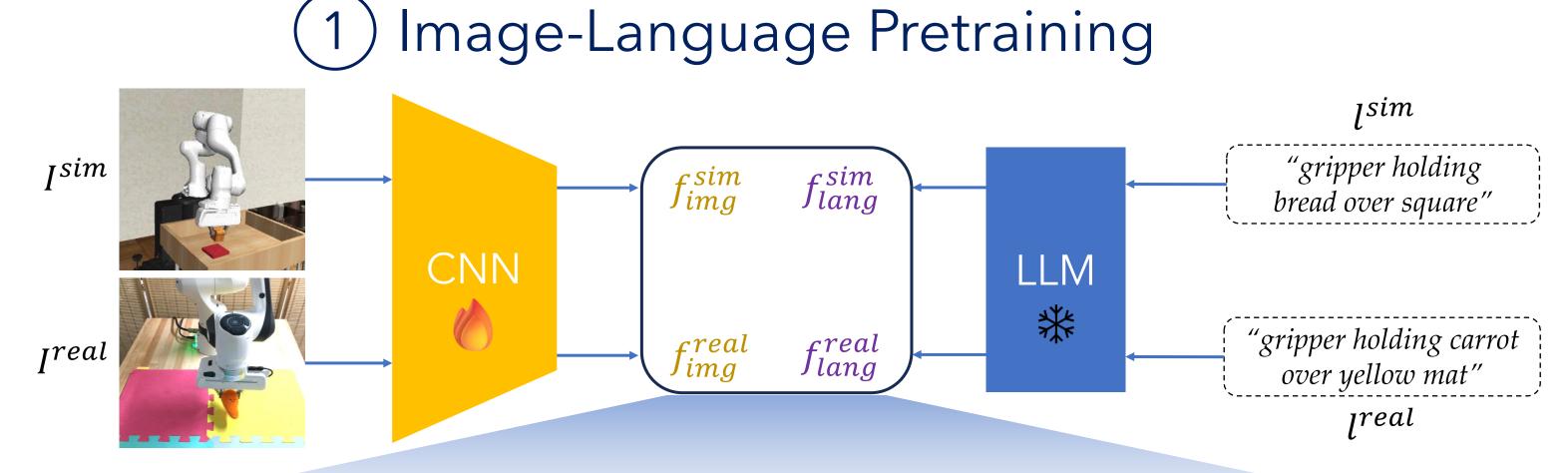
Predicted Action

Both Actions: Open gripper to place obj.

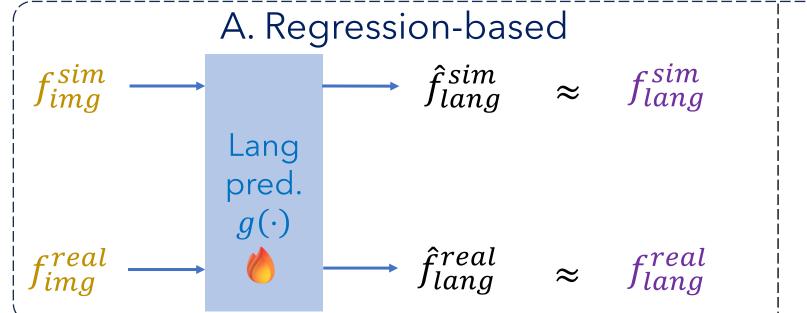
We want sim+real images with <u>similar semantics</u> to have <u>similar</u> <u>representations</u> for the policy to predict <u>similar action distributions</u>.

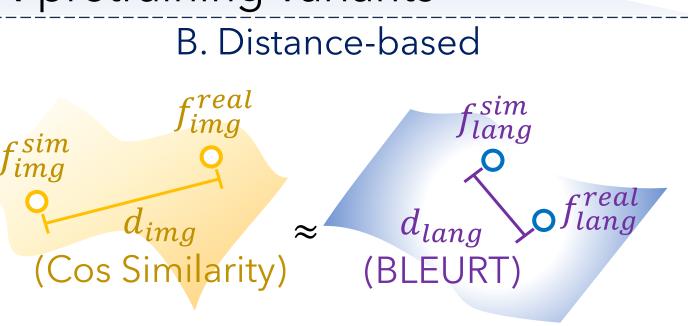
"gripper wrapping blender wire.'

Our Approach

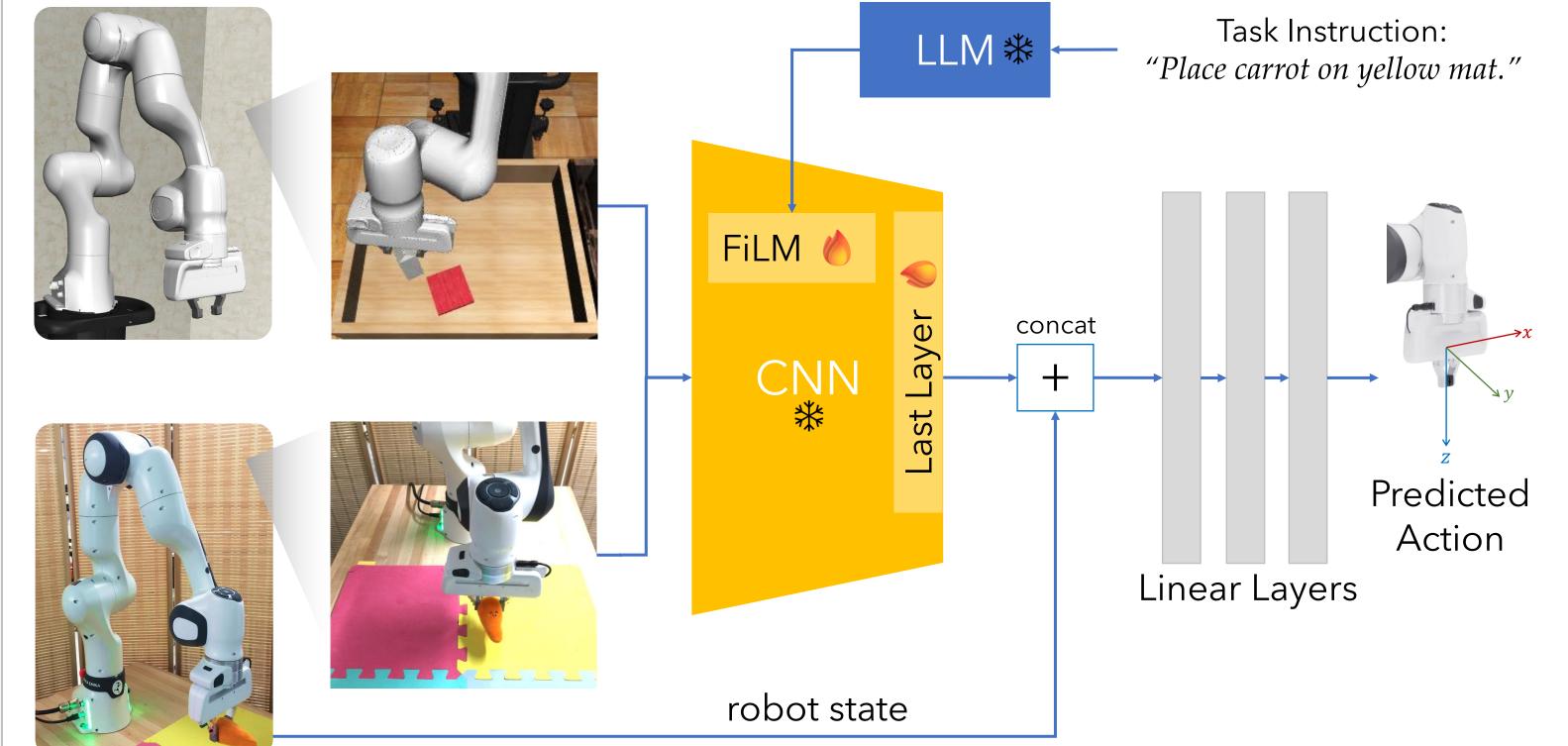


Language-regularized CNN pretraining variants

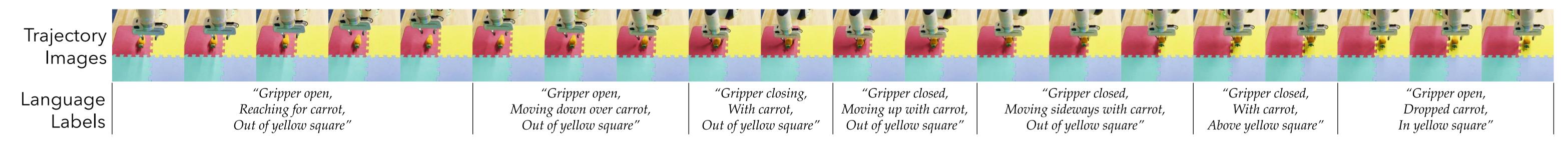




Multitask, Multidomain Imitation Learning

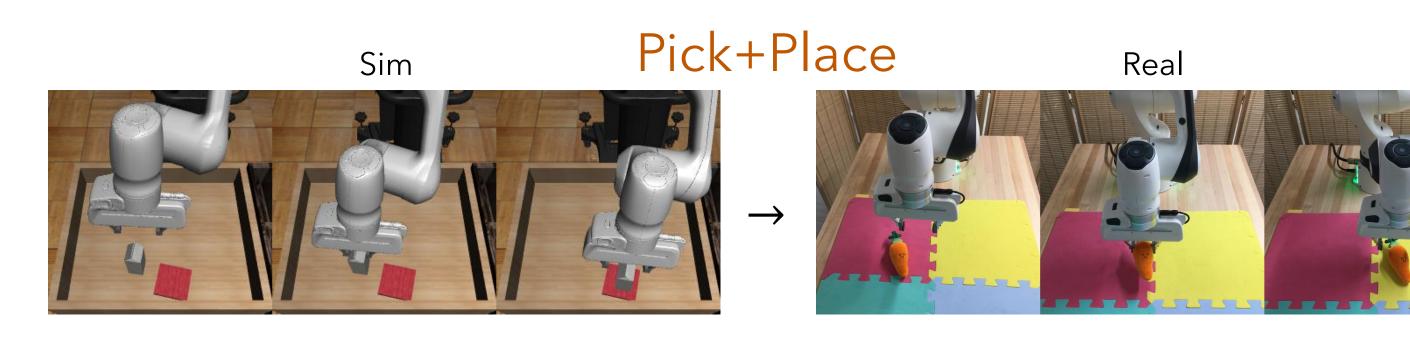


How Do We Label Images with Language Descriptions at Scale?



We automatically label trajectory images with templated annotations either during scripted policy data collection, or with a VLM afterwards.

Tasks



Multi-step Pick+Place

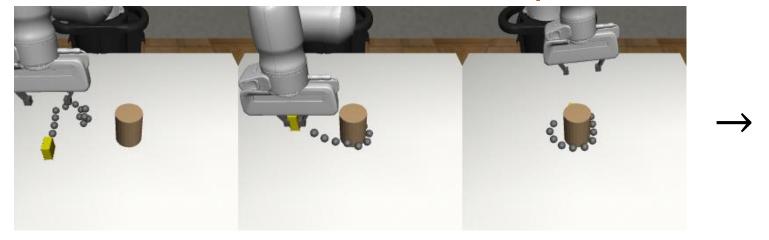
Sim2Real Results

Our method outperforms all baselines across decreasing data regimes (columns \rightarrow) and increasing task difficulty and sim2real gap (rows \downarrow). ■ No PT (real) ■ No PT (sim+real) ■ MMD ■ CLIP ■ R3M ■ Ours (Lang Reg) ■ Ours (Lang Dist)

100 Success Rate (%) 80 60 40 20 25 100 50

Pick+Place

Wrap Wire (Deformable)



Main Takeaways

1. Language can bridge wide sim2real gaps with domaininvariant representations. 2. Our method enables leveraging low-fidelity sim data for sim2real transfer on deformable objects.

Real-world Demos

Multi-step Pick+Place

