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Our Approach

Main Takeaways
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→

→

Sim Real

1. Language can bridge wide sim2real gaps with domain-
invariant representations.

2. Our method enables leveraging low-fidelity sim data for 
sim2real transfer on deformable objects.

Sim2Real Results
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Multi-step Pick+Place
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Wrap Wire (Deformable)
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Problem Statement
• Collecting real world data is costly. Simulators can cheaply generate abundant data.
• To use sim data to train real world policies, we need to overcome the sim2real gap.
• Common approaches to do so (domain rand., manual sys. ID) are expensive & tedious.
• Can we instead improve sim2real transfer by leveraging natural language to learn 

domain-invariant visual representations?

How Do We Label Images with Language Descriptions at Scale?

We automatically label trajectory images with templated annotations either during scripted policy data collection, or with a VLM afterwards.

Trajectory 
Images

Language 
Labels

“Gripper open,
Reaching for carrot,

Out of yellow square”

“Gripper open,
Moving down over carrot,

Out of yellow square”

“Gripper closing,
With carrot,

Out of yellow square”

“Gripper closed,
Moving up with carrot,
Out of yellow square”

“Gripper closed,
Moving sideways with carrot,

Out of yellow square”

“Gripper closed,
With carrot,

Above yellow square”

“Gripper open,
Dropped carrot,

In yellow square”

Our method outperforms all baselines across decreasing data regimes 
(columns →) and increasing task difficulty and sim2real gap (rows ↓).

Language Links Sim+Real Visual Features 
via Semantic Similarity, Improving 

Sim2Real Transfer with Visuomotor Policies

Both Images: “Gripper holding 
carrot above yellow square.”

Insight: Semantically Similar Images → Similar Actions

Both Actions: Open gripper to place obj.

Sim2Real Gap CNN
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“gripper holding bread 
above coaster.”

“gripper holding carrot 
above yellow square.”

Learned Representation Space

Predicted Action

CNN

“gripper holding milk 
next to coaster.”

“gripper wrapping 
blender wire.”

Push together/Pull apart representations of sim and real images with
Similar/Different language descriptions 

We want sim+real images with similar semantics to have similar 
representations for the policy to predict similar action distributions.
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