

Robotics: A Quest for Intelligence

Dr. Roberto Martín-Martín Robln: Robot Interactive Intelligence Lab

The AI Revolution

What kind of "I"?

No robot can do this!

Moravec's paradox (1988):

"it is comparatively <u>easy</u> to make computers exhibit adult level performance on <u>intelligence tests</u> or playing checkers, and <u>difficult</u> or impossible to give them the skills of a <u>one-year-old</u> when it comes to <u>perception</u> and <u>mobility</u>"

[source: Norris Labs]

Physically Interactive Intelligence:

the resourceful use of physical interactions in embodied agents that results in autonomy to perform physical tasks

[Gibson 1979, Mason'81, Bajcsy 1988, Brooks'90, Ballard'91, Ziemke'04, Noe'04, Pfeifer'06, Levine'16, Bohg'17, Batra'20]

Research in my lab: Creating learning methods that exploit physical interactions to increase autonomy in robotic systems

[Martín-Martín et al. IROS'14, ICRA'16, ICRA'18, IJRR'19]

[Martín-Martín et al. ICRA'18, Baum et al. Hum'17]

[Danielczuk et al. ICRA'19, Kurenkov et al. IROS'20, Kurenkov et al. '22 (under review)]

[Martín-Martín et al. IROS'19, Martín-Martín et al. '21 sub.]

[Martín-Martín et al. RSS'16, AuRo'18, Jonschkowski et al. IROS'16]

[Xu et al. NeurIPS'19, RSS'20, NeurIPSws'21]

[Mandlekar et al. IROS'19<u>, '21 sub., Wong et al.'21 sub.]</u>

[Srivastava CoRL'21, Li et al. CoRL'21, Martin-Martin* et al. CoRL'22, Wu et al. (under review)]

Some of our Future Directions

Physically Interactive Intelligence

causal and semantic understanding of the effect of interactions

from skills to longhorizon interactive activities

error awareness and recovery

Algorithmic Foundations and Methodology

robotics foundations:

- (optimal) control
- motion planning
- task planning
- 2D and 3D perception
- prob. theory

. . .

Physically Interactive Intelligent Solution

robot learning:

. . .

- reinforcement learning
- imitation learning
- representation learning
- foundation models

Domains and Problem Settings

stationary and mobile manipulation

simulation, benchmarking, sim2real

Human Guidance

human-in-the-loop

9

Thank you!

robertomm@cs.utexas.edu

