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Abstract: Effective robotic systems for long-horizon human-robot collaboration1

must adapt to a wide range of human partners, whose physical behavior, will-2

ingness to assist, and understanding of the robot’s capabilities may change over3

time. This demands a tightly coupled communication loop that grants both agents4

the flexibility to propose, accept, or decline requests as they coordinate toward5

completing the task effectively. We apply a Mixed-Initiative dialog paradigm to6

Collaborative human-roBot teaming and propose MICoBot, a system that han-7

dles the common scenario where both agents, using natural language, take initia-8

tive in formulating, accepting, or rejecting proposals on who can best complete9

different steps of a task. To handle diverse, task-directed dialog, and find suc-10

cessful collaborative strategies that minimize human effort, MICoBot makes de-11

cisions at three levels: (1) a meta-planner considers human dialog to formulate12

and code a high-level collaboration strategy, (2) a planner optimally allocates the13

remaining steps to either agent based on the robot’s capabilities (measured by a14

simulation-pretrained affordance model) and the human’s estimated availability to15

help, and (3) an action executor decides the low-level actions to perform or words16

to say to the human. Our extensive evaluations in simulation and real-world—on a17

physical robot with 18 unique human participants over 27 hours—demonstrate the18

ability of our method to effectively collaborate with diverse human users, yield-19

ing significantly improved task success and user experience than a pure LLM20

baseline and other agent allocation models. More information on our website:21

https://mico-bot.github.io/22
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Robot-Initiated 
Dialog

Could you open the package using 
the scissors?

There are no scissors on the 
coffee table.

I can bring the scissors for you! 
However, I am unable to open the 

package with the scissors.

Ok, if you bring the scissors, I will 
open the package.

Ok, I will do 
that now.

Can you please open the package 
and place it on the coffee table?

Human-Initiated 
Dialog

Absolutely!

Thank you, please put 
the car in as well.

No worries! I’ll happily put them 
in for you.

Good job! We need to seal the box. 
Please bring the ribbons here

When that is done, I will close 
the box and seal it. 

I’m busy. I hope you put the tissue 
and the car in the box.

Thank you so much for covering the 
box and wrapping it!

No worries!

Figure 1: We present MICoBot, a system for human-robot collaborative settings where both agents
can initiate and carry out physical and verbal actions to negotiate how to accomplish a task together.
Our system supports both robot-initiated (top row) and human-initiated (bottom row) task-directed
dialog, where both agents discuss who is best suited to perform steps in a long-horizon task. The
trace shows real dialog and physical interactions from our user studies (see our video and website).
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1 Introduction24

We aim to build robots that can seamlessly collaborate with humans in everyday household tasks.25

Such collaboration is critical for deploying today’s robots with limited capabilities. To be a truly26

effective partner, a collaborative robot must strive for task success with minimal human effort, while27

adapting dynamically to a human user’s capabilities, preferences, and willingness to help. Beyond28

adapting, the robot must also learn to communicate the real-time delegation of task components29

based on which agent—human or robot—is better suited for each. Existing approaches fall short30

of this ideal: modern AI assistants respond only to human-initiated interactions [1, 2], while prior31

human-robot interaction (HRI) solutions often assume full control over the collaboration plan and32

complete willingness from the human partner [3]. We argue that a truly collaborative human-robot33

team requires a paradigm shift towards a model where both agents can take initiative to propose, bar-34

gain, and accept or reject proposals from each other as they discuss in natural language how to best35

complete a task. In this paper, we introduce such a collaborative system, MICoBot (Mixed-Initiative36

Collaborative roBot), which we believe is the first to enable mixed-initiative natural language dialog37

for real-world physical collaboration between robots and humans.38

MICoBot enables mixed-initiative dialog to negotiate the allocation of task steps between a human39

and a robot collaborating on a physical task, and to coordinate the physical and verbal actions needed40

to execute the plan. We formulate this task-allocation problem as a constrained optimization where41

the goal is to find the most suitable agent to perform each step of the task, maximizing success while42

minimizing human effort, as well as respecting the human-initiated requests. To handle a wide43

range of dialog, MICoBot makes optimization decisions across three levels. First, a meta-planner44

determines the high-level strategy for collaborating with the human, incorporating human-imposed45

constraints (such as steps they want themselves or the robot to perform), and creating reactive code46

to generate the necessary robot actions (verbal or physical). This layer is implemented as an LLM-47

based coder that generates adaptive planning code. Second, a planner executes the generated code48

to determine the optimal collaboration approach, taking into account the current environment state,49

a self-assessment of the robot’s capabilities via an affordance model trained in simulation, and a50

dynamic evaluation of the human’s availability and willingness based on prior interactions. Finally,51

an action executor carries out the next step of the plan, which could involve either performing a52

manipulation action or initiating/responding to a dialog with the human.53

Through extensive experimental evaluation, we thoroughly validate our system in both simulation54

(with LLM-simulated humans of varying willingness and responsive moods) and the real world55

through a user study involving 18 unique participants collaborating with a Tiago mobile manipulator56

on three household tasks. Our approach outperforms a pure LLM baseline by 60% in success rate,57

while reducing the amount of human effort required compared to an all-human oracle by 60%.58

Additionally, our method was preferred over the pure LLM baseline by at least 80% of participants.59

In summary, our work’s contributions are four-fold: (1) we introduce a new problem setting that in-60

tegrates mixed-initiative natural language dialog with mixed-initiative human-robot interaction; (2)61

we propose a novel optimization framework for task allocation, balancing human and robot effort62

and success through a unified metric; (3) we provide a new simulator for collaborative household63

tasks built on top of MiniBehavior [4] that includes LLM-controlled virtual humans and is available64

on our website; and (4) robotic system and framework: we develop MICoBot, a three-level hier-65

archical solution for mixed-initiative speech2speech human-robot collaboration that flexibly adapts66

to a wide range of real human collaborators in physically grounded, long-horizon tasks.67

2 Related Work68

Mixed-initiative dialog [5–7] refers to communication with freeflowing questions and answers from69

both parties. In the NLP field, the dominant chatbot paradigm adopted by large language models70

(LLMs) largely eschews mixed-initiative interaction: humans pose substantive questions, and the71

chatbot primarily responds to fulfill these requests [1, 2]. Recent work has sought to make dialog72
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systems more goal-directed and proactive by incorporating mixed-initiative strategies—for example,73

persuading users to donate to charity, enhancing users’ emotional well-being [8–11], or clarifying74

ambiguous human requests [12–14]. However, none of these systems addressed mixed-initiative75

dialog in grounded, real-world collaborative scenarios involving physical manipulation tasks.76

In the human-robot interaction (HRI) field, researchers have developed human-robot collaboration77

systems that interact through language but are restricted to single-initiative dialog. Some of these78

systems integrate LLMs as task planners or delegators [15–17] for tasks like real-world cooking [15]79

and object sorting [16]. Other systems implement a leader-follower paradigm in simulated worlds,80

where the leader issues natural language instructions for the follower to execute [18–21]. Single-81

initiative HRI systems can ask humans for clarification [22] or assistance [23–25], or inform humans82

of their observations [26–28]. However, by supporting only single-initiative dialog, these systems83

lack the capacity to adapt to the evolving nature of the human, robot, and environment—limiting84

their capacity to find the optimal division of labor that respects user preferences. [16].85

Some works in HRI have explored mixed-initiative collaborative systems without dialog, only86

with physical actions [29–34]. In particular, Baraglia et al. [35] studied separate regimes of agent87

initiative (human-initiative, requesting help, or robot-initiative, proactively helping), but failed to88

support a natural human-robot dialog. By focusing solely on physical actions, these prior works89

overlook the critical role of communication in effective collaboration, thereby limiting the flexibility90

of the human-robot team. With MICoBot, we enable both agents to take initiative—through both91

physical and verbal actions—via task-grounded dialog.92

Several prior works in robotics and planning have studied the problem of human-robot optimal93

task allocation, typically optimizing the time to perform a task or minimizing idle agents, posing94

the problem as a scheduling problem [36, 37]. Others have prioritized different objectives, such as95

safety [38], through the formulation of a constrained optimization problem [39]. While these solu-96

tions may achieve shorter execution times, they assume a priori known capabilities and availability97

of all agents, including both robots and humans. In contrast, MICoBot can adapt to the specific98

human’s willingness to help by estimating its availability based on previous dialog.99

3 Problem Setting: Task Collaboration with Mixed-Initiative Dialog100

Figure 2: Our MDP Formulation for
Mixed-Initiative Collaboration

MDP Formulation. In this paper, we study human-robot101

collaboration for shared manipulation problems where102

mixed-initiative dialog occurs. In these problems, we as-103

sume that both agents can observe the state of the world,104

s ∈ S, and perform actions, a ∈ A = Ap ∪ Av , com-105

prised of a physical action space, Ap, that directly af-106

fects the physical state of the environment s, (e.g., move107

objects, open them, etc.), and a free-form, natural lan-108

guage verbal action space, Av , that are directly observed109

by the other agent but do not change the physical state.110

We model the problem as a Markov Decision Process (MDP) from the robot’s point of view (see111

Fig. 2), where on each environment step, the robot performs some action, aR ∈ Ap,R ∪ Av,R and112

receives an observation o = [I, av,H , sproprio ] consisting of an RGB-D image I , an optional verbal113

action from the human partner av,H , and the robot’s proprioceptive state sproprio . Within each en-114

vironment step, the human may perform a series of actions, aH ∈ Ap,H ∪Av,H , in its own physical115

and verbal action space after perceiving the world state and robot’s previous dialog, av,R.116

Physical and Verbal Action Spaces. The physical and verbal action spaces, Ap and Av , are shared117

between both agents. Each element of these action space are a parameterized action primitive rep-118

resented by the pair, ap/v = (ωp/v, θp/v). ωp is the type of the physical action primitive (open,119

pick-and-place, etc.) and θp are the corresponding parameters (e.g., what object to open or pick120

and where to place it). We assume that humans are fully competent in executing all steps of a col-121

laborative household manipulation task, but may be unwilling or unavailable to perform some or122
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all required actions. Their behavior can range from indifferent (never acting) to overly proactive123

(completing the entire task without robot involvement). In contrast, robots often have limited ma-124

nipulation capabilities and may be unable to execute more complex actions. ωv is the type of the125

verbal action primitive (ask_human_for_help, respond_to_human, etc.) and θv are the corre-126

sponding parameters that define the necessary context of the verbal primitive (e.g., what step the127

robot needs help on, or can/cannot perform). While the types of verbal actions are limited, the gen-128

erated language based on them is freeform and open-vocabulary. MICoBot first selects an abstract129

verbal action from this space, then translates it into a natural language utterance to negotiate with130

the human—conveying its requests and the assistance it requires for successful collaboration. MI-131

CoBot must reason over the asymmetries in physical capabilities to devise collaboration strategies132

and negotiate them with verbal actions, maximizing task success while minimizing human effort.133

Collaborative Task Definition and Problem Statement. We assume the collaborative task is de-134

fined by a task plan of length K, known to both agents and represented as a sequence of unas-135

signed physical action primitives, [ap,0, ..., ap,K−1], such as [(pick-and-place(box, table), . . . ,136

close(box)], obtained from the task instructions or off-the-shelf task planner. To complete the ma-137

nipulation task while minimizing human effort, the system must allocate steps of the plan between138

the two agents—negotiating with the human through robot-initiated dialog to suggest assignments,139

adapting to human preferences through human-initiated dialog, and ultimately executing its assigned140

physical actions. At each step t, the system must compute the best allocation of the remaining steps141

of the plan, G = [gt, ..., gK−1], where ∀t, gt ∈ {H,R}. The optimal allocation G∗ maximizes142

the expected task success probability while minimizing total human effort. These objectives are143

inherently competing: a policy focused solely on maximizing success might allocate all steps to144

the human (assumed to be perfectly competent); conversely, minimizing human effort alone would145

assign all steps to the robot, even when it may be incapable of completing certain steps. The opti-146

mization also incorporates constraints conveyed through the mixed-initiative dialog history, such as147

task allocation requests or proposed task splits. The resulting allocation G∗ determines whether the148

robot executes the current step (R) or negotiates with the human for assistance (H).149

4 MICoBot: Mixed-Initiative Collaborative Robot150

Collaborative Task Allocation as Constrained Optimization.151

In MICoBot, we formulate the step allocation problem for collaborative tasks as a constrained opti-152

mization, where the objective is to maximize expected task success while minimizing human effort.153

Constraints—such as preferences for certain steps to be done by a particular agent—are inferred154

through dialog with the human. To simplify the optimization and avoid a complex multi-objective155

formulation, we combine success probability and effort into a single cost metric for each step, re-156

gardless of whether it is performed by the robot or the human. Building on prior work on temporal157

distances in reinforcement learning [40], we use Q-functions to unify these two components. We158

assume each task step is executed by a multi-task policy π that operates at a fixed control frequency159

(e.g., once per second), performing continuous low-level control. In this low-level MDP (distinct160

from the high-level task MDP described in Sec. 3), we define the reward as r = −1 per time step161

until the skill completes or times out, at which point rtermination = 0. A well-trained Q-function,162

Q : ot×at = (ωt, θt) 7→ R with a discount factor of 1, then represents the negative expected num-163

ber of timesteps until skill completion from a given state. For a highly competent agent that never164

fail (e.g., a human), this corresponds to the average timesteps required to perform the action. For an165

imperfect agent that may fail, the Q-function reflects a weighted expectation over both successful166

and failed outcomes—where failure contributes a significant timestep penalty (timeout) weighted by167

its probability. We assign each agent a distinct Q-function: QR for the robot and QH for the human.168

These agent-specific Q-functions thus provide a unified, interpretable cost metric for comparing step169

allocations, jointly capturing both execution time (effort) and likelihood of success.170

However, directly optimizing step allocation using only the Q-functions described above introduces171

three key limitations that diverge from realistic human-robot collaboration scenarios: (1) human172
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Iterative Planner

Optimizer Q-fns

Meta Planner Action Executor

Action Plan
[bring( ), open( , ), …]

Symbolic State
The  is on the . The  is at (x, y)…

Dialog History
: “Could you please open the package?”
: “I want you to open it. And pour it too.”

Task Allocation Coder

Action Selection Coder

𝐶1, … , 𝐶𝑛
constraints

H_init_dialog = True

H_dialog_type = “allocation”

Constraints_on_G = [ , , … ]
find_best_allocation(G)

…

R_dialog_type = “respond_to_H”

decide_next_action(…)

…

𝐺 = [ , , … ]
Best Alloc.

Physical

Verbal

“I’m able to bring the scissors but 
can’t use them to open the package. I 
can pour the package after though!”

Constraint relaxation

Mobile Manipulation Actions
pickplace pourCode Executor

RGB-D

fold

Map

Arm + Base Joint Commands

Dialog type: Respond to 
𝑝𝐻 estimator

𝑄 functions
(learned from simulation)

Expected Effort: −100

𝑎𝑐𝑡𝑖𝑜𝑛

 is 30% likely to help

Action Selector

Code Executor

Next action
Respond to 

Inputs: Inputs:

Inputs:

Figure 3: MICoBot consists of 3 decision-making modules: a meta-planner that outputs a strategy
for task collaboration expressed through adaptive planning code, a planner that executes the code
and optimizes our objective in Equation 1 to find the next primitive action to take, and the action
executor that outputs the low-level physical action trajectory or verbal utterance to say to the human.

and robot effort are treated as equally, ignoring the higher value typically placed on human time173

and attention; (2) the human is assumed to always comply with robot-initiated requests, overlook-174

ing variability in willingness or availability; and (3) human-initiated requests or preferences are not175

taken into account, limiting the system’s ability to adapt to human intent. To address (1), we in-176

troduce a human-effort factor, α, indicating how much more valuable human effort is compared to177

robot effort. To address (2), we adjust the human Q-values by incorporating an inferred probability178

pH,t that represents the likelihood of the human agreeing to perform action aH,t = ωt(θt) when179

asked. For less cooperative users, this probability lowers the expected success of the action, effec-180

tively increasing the magnitude of the negative Q-value due to potential human refusal. To address181

(3), we treat the optimization problem as subject to constraints, C1, . . . , Cn, extracted from human-182

initiated dialog—such as explicit requests to perform specific steps themselves or to delegate them183

to the robot. Altogether, we propose the following objective to find the optimal task allocation G:184

max
gt,...,gT

T−1∑
t

(
1gt=H · α

pH,t
+ 1gt=R

)
Qgt(st, at),

s.t. C1, . . . , Cn ≤ 0.

(1)

that minimizes expected time-to-success while prioritizing saving human effort.185

4.1 MICoBot Framework186

MICoBot is a three-level framework (Fig. 3) that includes 1) a meta-planner, which parses previous187

human dialog and generates code to optimize for task allocation and select the next action for the188

robot, 2) an iterative planner, which updates planning state variables, allocates and decides the next189

action to perform, by executing the code, and 3) an action executor, which carries out the action190

primitive, either through low-level physical actions or with an utterance to say to the human.191

L1: Meta-planner. The meta-planner dictates the overall strategy for the lower levels to follow.192

Based on the most recent human dialog, the current symbolic state of the world, the task plan, and193

approximately 15 in-context learning (ICL) examples, it generates two pieces of code: first, task194
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allocation code to adapt the optimization computation, such as to map human dialog into additional195

constraints, and second, action selection code, to determine how to choose the next action, such as196

whether to engage in additional dialog before making further progress on the plan. The meta-planner197

is implemented as an LLM-based (GPT-4o) coder.198

L2: Iterative Planner. The iterative planner executes code generated by the meta-planner in two199

stages. In the first stage, it runs the optimization routine, which enumerates all possible task al-200

locations and selects the one that maximizes the objective in Eq. 1. To compute this, the planner201

instantiates agent-specific Q-functions based on the current state and candidate actions (see below202

for details on Q-function), and estimates the probability of human assistance, pH,t, using an LLM-203

based sentiment analysis over the prior human-robot dialog. By adjusting pH,t, MICoBot adapts204

to varied user sentiments by estimating the expected cost of assigning tasks to them. In the initial205

iteration, the planner incorporates all constraints produced by the meta-planner from the mixed-206

initiative dialog history. If no feasible allocation is found—for instance, if a human insists the robot207

perform a step it cannot complete—the planner iteratively relaxes the most recent constraint from208

human dialog. In the second stage, once the optimal allocation is determined, the planner invokes209

meta-planner code to generate the optimal action—verbal or physical—a = (ω, θ) to execute.210

L3: Action Executor. The action executor is responsible for executing the action primitive selected211

by the planner. For physical actions, it generates a trajectory for navigation and arm movement to212

reach the location and manipulate the target object while avoiding obstacles. Following a similar213

pipeline to Shah et al. [41], we use the move_base ROS package for path planning over a 2D214

occupancy map, and Grounding DINO [42] to segment the target object from the scene based on the215

natural language query in θt. An RGB-D camera is used to backproject segmented image pixels into216

a 3D point cloud, from which we identify graspable or placeable points in the robot’s workspace.217

Inverse kinematics (IK) is then used to move the arm to these points. For verbal actions, we employ218

GPT-4o to generate natural language utterances to communicate with the human, based on both the219

intended dialog intent (e.g., help request, split proposal) and the verbal action parameters (context220

required for appropriate generation) from the upstream planner. Using approximately 10 in-context221

learning (ICL) examples, the LLM produces free-form language grounded in the task context.222

Training Q-functions. MICoBot’s optimization process depends on accurate approximations of223

the Q-functions, which capture each agent’s expected effort and likelihood of success when execut-224

ing a task step. To estimate the robot’s Q-function (QR), we use the OmniGibson simulator [43],225

configured with a coarse model of the real-world task and environment (see Appendix for visual-226

izations). In simulation, we execute action primitives that closely mirror those used by the physical227

robot, recording both completion times and failure cases. These statistics are used to construct QR228

as described earlier in this section. Since the task state is represented symbolically in both the simu-229

lator and the real-world system, the sim-to-real gap is minimal. To estimate the human’s Q-function230

(QH ), we assume humans do not fail at task execution. Thus, we only require time estimates for231

each step, which MICoBot obtains by prompting an LLM to predict how long a human would take232

to execute action at = ωt(θt), plus a travel time estimate based on the human-object distances.233

Hierarchical Plan. To improve communication for long-horizon task plans, MICoBot groups adja-234

cent low-level steps into semantically meaningful abstract actions that can be discussed more suc-235

cinctly with the human. The system only descends to a finer-grained level of detail when neces-236

sary—during negotiation over low-level step assignments. This hierarchical approach reduces the237

frequency and complexity of dialog, resulting in more efficient and user-friendly communication.238

5 Evaluation239

We evaluate MICoBot in both real-world and simulated settings. In the real world, a Tiago mobile240

manipulator collaborates with a human user on household manipulation tasks. In simulation, we use241

the Mini-Behavior gridworld [4] with a simulated human, allowing for larger-scale experimentation242

and controlled comparisons across methods, particularly in relation to human behavior and dialog243

dynamics. As suggested before, a successful robotic collaborator must complete the task efficiently244

6



Pour Package in Bowl
n = 6

Assemble Toy Car
n = 6

Pack Gift Box
n = 6

Average
n = 18

Ours LLM Ours LLM Ours LLM Ours LLM

Entire Task Success Rate (%, ↑) 50 0 67 0 67 0 61.1 0.0
% of task steps completed (↑) 83 60 94 29 88 50 88.2 46.4
% of steps performed by Human 21 5 60 5 35 21 38.8 10.4
% Users Preferring ... (↑) 83 17 100 0 67 33 83.3 16.7
Communicative ability (↑) 3.3/5 2.3/5 4.3/5 1.3/5 2.8/5 2.3/5 3.5/5 2.0/5
“Clearly communicated to me
when it couldn’t do something.” (↑) 4.3/5 2.3/5 3.7/5 1.2/5 4.2/5 2.5/5 4.1/5 2.0/5

Overall Satisfaction working w/ Robot (↑) 3.7/5 2.7/5 3.5/5 1.5/5 3.5/5 2.5/5 3.6/5 2.2/5

Table 1: Comparison between our method and the LLM baseline across three real-world tasks.
Ratings out of 5 are on the Likert scale. By more effective task allocation and communication, our
method is able to achieve much higher task success rate and overall user satisfaction.
while minimizing human effort. Accordingly, our primary evaluation metric is the success rate245

per unit of human effort. We also report subjective measures of robot behavior, including user246

satisfaction, preference rankings, and Likert-scale ratings.247

Environment. In the real-world, we perform our experiments in a mock apartment with a kitchen248

and living room area with commonplace furniture. In all of our tasks, the robot and human work249

together on opposite sides of a coffee table, and the human spends most of their time on the couch,250

where they can do their own work. The human is allowed to be as inactive or proactive as they wish251

and to perform physical and verbal actions as defined in Section 3 (though we continue running the252

trial if they initiate dialog beyond the scope). Each human user study consisted of two 20-30 minute253

trials, in which they collaborated with both our method and a pure LLM baseline. The ordering of254

the two trials was randomly determined. Trials for all methods terminate under any of the following255

conditions: an irrecoverable primitive failure occurs, 4T steps have elapsed for a plan of length T ,256

an infeasible step is allocated to the robot twice consecutively, or the human refuses twice to perform257

a step that the robot is incapable of executing.258

Baselines. Because multiple components of our method are powered by LLMs, we compare our259

approach to a pure LLM baseline (LLM) given the same information as our meta-planner: symbolic260

state, dialog history, task plan, and α human-robot effort tradeoff factor. The LLM baseline is also261

provided with a list of the robot’s available skills and assumes that the human always successfully262

completes a step once they agree to perform it. The LLM baseline is prompted to produce a plan263

allocation G that primarily optimizes for task success and secondarily minimizes human effort.264

To control for the amount of human effort elicited in the user studies with our method, we compute265

an additional random allocation baseline that does not involve a human participant, RECB (random266

effort-controlled baseline). We denote the percentage of steps done by the human in the user trials of267

our method as pc. RECB randomly allocates the current step to the human with probability pc, and268

assumes the human always accepts the robot’s request. RECB also assumes access to oracle robot269

primitives with 100% success rate.270

In simulation, we additionally compare against an RL baseline (hierarchical task allocator + robot271

policy; see Appendix for details), and a naive Random baseline, which randomly allocates either272

agent (with probability 50%) to perform the next step.273

Ablations. To measure the importance of mixed-initiative, we perform the following ablations in274

simulation: H-init and R-init, where the human or the robot alone can initiate any dialog, respec-275

tively. We further ablate components of MICoBot in simulation by running it w/o P_H (no pH,t276

estimation) and w/o Plan Hierarchy (where our method talks to the human in low-level steps).277

Tasks. We performed user studies on 3 real-world tasks (Pour Package into Bowl, Assemble Toy278

Car, and Pack Gift Box) with 6 participants per task for a total of 18 unique human participants.279

Each task is a long horizon sequence of 5 to 8 mobile manipulation steps. See Appendix for details.280

Experimental analysis. Our experiments are designed to answer the following research questions:281

(1) Does our method achieve the best trade-off between task success and minimizing human282

effort? In our real-world user study (Table 1), MICoBot achieves a 61% task success rate, compared283
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Figure 4: In both real-world user studies (left) and simulation trials with a simulated human (right),
our method (red) demonstrates the best tradeoff in achieving task success (y-axis) for a given amount
of human effort (x-axis) than baselines (blue) and our method’s ablations (pink).

to 0% for the LLM baseline, by leveraging human assistance on 38% of the steps. The LLM baseline284

underperformed because it prioritized minimizing human effort over task completion—requesting285

and receiving help in only 10% of steps, even when the robot lacked the capability to execute them.286

To control for the amount of human effort received, we compare our method to RECB in Figure 4.287

Despite RECB assuming oracle robot primitives with 100% success, our method still significantly288

outperforms it, demonstrating a more effective balance between success and human workload.289

% of Ratings

LLM

MICoBot

33% 33% 17% 11% 6%

11% 28% 56% 6%

Overall User Satisfaction

% of Ratings

LLM

MICoBot

39% 28% 28% 6%

6% 11% 33% 28% 22%

Communicative Ability

0 20 40 60 80 100
% of Ratings

LLM

MICoBot

33% 33% 6% 22% 6%

22% 44% 33%

Asked for Suitable Amount of Help

0 20 40 60 80 100
% of Ratings

LLM

MICoBot

56% 11% 22% 11%

11% 22% 17% 50%

Awareness of Its Limitations

Likert Rating ( )
1 2 3 4 5

Figure 5: Our method substantially outperforms the pure LLM
baseline in user ratings averaged over all n = 18 participants.

(2) How do users feel about290

working with our system?291

The A/B blind preference test in292

Table 1 shows that 83% of users293

preferred our method over the294

LLM baseline. Our method also295

significantly outperformed the296

baseline in user scores on over-297

all satisfaction, communicative298

ability, and capability in asking299

for a suitable amount of help (See Figure 5). In contrast, the LLM baseline consistently failed to300

express when it needed help and was often unwilling to reject tasks it could not complete, leading301

to over-promises and task failures. A representative dialog exchange—available in the Appendix302

and on our project website—shows MICoBot successfully persuading an initially reluctant user to303

perform a step the robot was incapable of executing.304

(3) Is mixed-initiative dialog critical to our method’s performance? Figure 4 (right) shows that305

our full method outperforms both ablated variants that restrict dialog to single-initiative modes:306

robot-only initiation (R-init) and human-only initiation (H-init). H-init performs especially poorly,307

as it prevents the robot from requesting help for steps it cannot execute. R-init performs slightly308

worse than the full method because it does not allow the human to proactively initiate dialog and309

assist when appropriate. These results underscore the importance of mixed-initiative dialog in en-310

abling flexible, robust human-robot collaboration.311

Additional experimental results and analysis (e.g. the role of pH,t estimation), are in the Appendix.312

6 Conclusion313

We proposed MICoBot, a real-world robotic collaborator that can engage in mixed-initiative dialog314

with humans on long-horizon mobile manipulation tasks. Our work represents the first effort to315

unify two previously unconnected lines of research: mixed-initiative dialog and HRI. To this end,316

we formulated a novel optimization function and robotic framework using mixed-initiative dialog317

as a rich interface for task allocation to maximize task success while minimizing human effort and318

complying with verbally-expressed human preferences. Real-world user studies with 18 human319

participants and nearly a thousand trials in simulation demonstrate the efficacy, adaptability, and320

user satisfaction of our method across a diverse range of human physical and verbal behavior.321
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7 Limitations and Future Work322

This paper represents our initial effort on uniting mixed-initiative natural-language dialog with323

mixed-initiative human-robot interaction. While we focused on delegating steps for long-horizon324

manipulation tasks in a manner that maximizes task success and minimizes human effort, we be-325

lieve this paper opens up exciting new avenues for future work. These include enabling both agents326

learning to provide and incorporate spatial-temporal feedback to each other while performing a task,327

share relevant task information in an imperfect-information setting, and replan and redefine a task328

as necessary, all through mixed-initiative dialog interactions.329

MICoBot has a number of limitations. First, it assumes a fixed plan with a predetermined ordering330

of steps. It cannot handle cases where the human wishes to add new steps to or remove existing steps331

from the plan dynamically, such as if the user tells the robot to “grab another cold drink while you’re332

at the fridge before coming back to me.” Our method also cannot handle cases where a robot and333

human wish to collaborate simultaneously on the same step in the plan, such as if the robot holds334

a roll of tape and the human cuts from it. Furthermore, MICoBot does not support parallelization335

where both the human and robot can work on different steps of a task simultaneously. One way to336

address this would be to operate on plan trees, where the parent nodes are steps that must be done337

before the child nodes, and sibling nodes can be executed by either agent in parallel.338

Our method could be improved further by taking into account more information about the user.339

For instance, MICoBot assumes that “effort” is based on the time necessary to perform a task until340

completion. However, effort may also depend on the intensity of the task, how much the user enjoys341

it, and how physically capable each user is—our method had sidestepped this issue by assuming each342

human would expend the same amount of effort for each action primitive from some given state s.343

Finally, there are additional ways to better predict pH,t, such as by processing tone-of-voice and344

observing facial expressions, that can enable the robot to produce more emotionally understanding345

dialogue, which can potentially boost task success outcomes and increase user satisfaction.346
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Figure 6: Real-world tasks from left to right: pouring package into bowl, assembling toy car, and
packing gift box.

Appendix621

Appendix A Real-world Task Descriptions622

Appendix A.1 Task Plans623

Fig. 6 depicts photos of our real-world tasks. In Task 1: Pour Package into Bowl, the plan includes624

(steps 1-3) bringing the package, scissors, and bowl from the kitchen to the coffee table, (step 4)625

opening the package with the scissors, and (step 5) pouring the opened package into the bowl. The626

robot is incapable of performing step 4 and must rely on human help. In Task 2: Assemble Toy627

Car, the plan includes (steps 1-3) bringing the parts tray, drill, and wheels from the shelf to the628

coffee table, (step 4) using the drill and wheel caps from the parts tray to put the wheels onto the629

chassis, (steps 5-6) finding and switching the drill bit, and (steps 7-8) screwing in the window and630

seats onto the car with the drill. The robot is incapable of performing steps 4, 6, 7, 8, and has a631

low success rate for step 5. In Task 3: Pack Gift Box, the plan includes (step 1) folding down the632

gift box flap, (steps 2-3) putting the tissue paper and toy car into the box, (steps 4-6) putting on the633

lid, getting the ribbons from the console table, and wrapping them around the box, and (steps 7-8)634

cutting a piece of tape to stick the gift bow to the top of the gift box. The robot is incapable of635

performing steps 4, 6, and 7, and has a low success rate for steps 2 and 5.636

Minimal human effort required to complete the tasks ranged from just one step in Task 1 to four637

steps in Task 2, enabling us to test how our system compares with baselines in various regimes of638

dependence on human collaboration.639

Appendix A.2 Hierarchical Plan Trees for Each Task640

The robot assumes a high-level plan understanding with the human, and only communicates about641

low-level steps when necessary, such as to split up a high-level step. These are the high and low-642

level step breakdowns for each task, which we call the plan hierarchy. The low-level steps are listed643

here in skill-parameter pair format.644

Task 1: Pour Package into Bowl (5 low-level steps)645

1. Bring bowl and package to coffee table.646

(a) pickplace(bowl, coffee_table)647

(b) pickplace(package, coffee_table)648

2. Open package.649

(a) pickplace(scissors, coffee_table)650

(b) pick_open_place(scissors, package, coffee_table)651

3. Pour package into bowl.652

(a) pick_pour_place(package, bowl, coffee_table)653
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Task 2: Assemble Toy Car (8 low-level steps)654

1. Bring parts to coffee table.655

(a) pickplace(parts_tray, coffee_table)656

(b) pickplace(wheels, coffee_table)657

2. Assemble wheels.658

(a) pickplace(drill, coffee_table)659

(b) put_on(wheels, car, drill)660

3. Switch drill bit.661

(a) pickplace(hex_drill_bit, coffee_table)662

(b) switch(hex_drill_bit, drill)663

4. Assemble rest of car.664

(a) put_on(window, car, drill)665

(b) put_on(seats, car, drill)666

Task 3: Pack Gift Box (8 low-level steps)667

1. Assemble box.668

(a) fold(box_flap)669

2. Put in gift.670

(a) pickplace(gift_tissue_paper, box)671

(b) pickplace(toy_car, box)672

3. Seal the box.673

(a) cover(box_lid, box)674

(b) pickplace(ribbons, coffee_table)675

(c) wrap(ribbons, box)676

4. Decorate the box.677

(a) cut_put(tape, scissors, box)678

(b) pickplace(gift_bow, box_lid)679

Appendix B Dialog Excerpts from our User Studies680

Appendix B.1 Convincing a Reluctant User to Perform a Step681

Our system is able to flexibly handle long dialog interactions like this one on Task 1 (opening and682

pouring the package into the bowl), where it manages to convince the human to help with opening683

the package.684

Robot “Could you please open the package using the scissors on the coffee table? Thank you685

so much!”686

Human “There are no scissors on the coffee table.”687

Robot “Let’s collaborate to open the package! I can place the scissors onto the coffee table,688

and you can then use them to open the package. Thank you for your help!”689

Human “I think you should bring the scissors, and then you should use the scissors to open the690

package.”691

Robot “I’m happy to place the scissors on the coffee table for you. However, I’m not able to692

open the package with the scissors and place everything on the table. Let me know if693

there’s anything I can do to assist.”694
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Human “Ok, if you bring the scissors, then I will open the package with the scissors.”695

Robot “Great! I’ll happily place the scissors on the coffee table. Thank you for taking care of696

opening the package with the scissors!”697

Robot [brings the scissors]698

Human “Thanks for bringing the scissors!”699

Robot “Could you please open the package with scissors and place it on the coffee table?700

Thank you!”701

Human “Ok, I will do that now!”702

Human [opens the package]703

Appendix B.2 Failure Case704

This is an example of MICoBot unable to act on the motion-level feedback (making the tissue paper705

“lay flatter”) that the human wants the robot to perform. Additionally, MICoBot misunderstands the706

human and thinks they are talking about the ribbons step when the human is still talking about the707

tissue paper.708

Human “Please pack the gift.”709

Robot [Puts tissue paper into the box.]710

Human “It would be nice if the parchment was laying flatter.”711

Human “The compartment is kind of squished underneath the car. If you can hold the car for712

me, I can fix the parchment quickly.”713

Robot “I’m sorry, but I can’t cover the box with the lid. Could you help with that part? Thank714

you so much! Could you kindly help with sealing the box? Specifically, could you cover715

the box with the lid? Thank you so much for your assistance!”716

Human “Yeah, I can, but can we fix the parchment first? If you can pick up the toy car, I can fix717

the parchment.”718

Robot “I’m delighted to hear you’ll help! Unfortunately, I won’t be able to wrap the ribbons719

around the box.”720

Human “Okay, that’s fine. We can get to that later. Let me put the lid to the box on and then we721

can talk about the next steps.”722

For the complete set of dialogs and operations in our human trials, please visit our website at https:723

//mico-bot.github.io/.724

Appendix C MICoBot Implementation Details725

Appendix C.1 Robot Q-function QR training in OmniGibson726

To train Q-functions for the robot, we first create a simulated OmniGibson environment with a PAL727

Tiago robot and an environment that roughly matches the relative locations of the relevant furnitures728

and objects. We then implemented each real-world skill first in OmniGibson. Fig. 7 depicts example729

frames from primitives in task 1 and task 3 we ran in the OmniGibson simulator to collect sample730

Q-values for each skill.731

We collected samples of the form (o, a, T ), where o is the initial observation of the world, a is the732

skill-parameter pair (ω, θ) taken by the robot at o, and T is the number of timesteps the robot takes733

to succeed at a from o. If the robot does not succeed in its execution, then T is set to some fixed734

constant representing the maximum number of timesteps allowed in each skill-parameter execution.735
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Task 1: Pick package from shelf (left) and place on
coffee table (right).

Task 3: Pick toy car from coffee table (left) and place
into gift box (right).

Figure 7: Frames from primitive rollouts in OmniGibson for task 1 (left two images) and task 3
(right two images). Left and right images within each task are frames near the beginning and end,
respectively, of each skill. The square image at the top right of each frame represents the robot’s
camera view observation.

To train our Q-functions, we collect roughly 100 samples for each action a and train with inputs736

(o, a) and target Q-values −T using ℓ2 regression with the Adam Optimizer. Our network architec-737

ture is extremely lightweight–2 linear layers with hidden size 32, and an output size of dimension 1738

for the Q-value.739

Appendix C.2 Human Q-function QH Estimation740

To estimate QH , we computed two terms. The first is the human’s stationary cost—the number of741

seconds it would take for the human to perform some task if the relevant items were all right in742

front of them. This term was copied from the output of an LLM call, which was prompted with a743

natural language description of the low-level step in the task, and with a URL to the toy car (for744

task 2). The second term is the human’s traveling time—the number of seconds it would take for745

the human to move from their current location to where all the objects are. This was a simple 2D746

euclidean distance (in meters) between the assumed human location on the couch (in the real-world747

user studies) and the location of the objects, divided by the average human walking speed of 1.4m/s.748

We recognize this is a crude estimate of human effort, and we discuss the limitations of this in the749

main text.750

Appendix C.3 Forward Dynamics Model751

Our Q-functions rely on state and action inputs. However, computing the best task allocation in-752

volves considering Q-values for future steps, which depends on having knowledge of what the future753

state at that step will be. This involves creating a forward dynamics model so that we can estimate754

the future state n plan steps into the future, which can be difficult to learn accurately for continuous755

states. We sidestep this problem by using symbolic states for our Q-values trained in simulation,756

and maintaining these symbolic states during our real-world experiments. A symbolic state-based757

forward model is feasible to hardcode in our problem setting because we assume that each action758

affecting change in the world is a skill-parameter physical primitive, where the effect is quite easy759

to specify symbolically. For instance, the effect of pickplace(bowl, coffee_table) is that the760

bowl moves from its original furniture to the coffee table. Though this is a limitation of our method,761

learning a forward dynamics model is not a contribution of our work, so we leave the extension of762

our approach to continuous state representations to future work.763

Appendix D Detailed Simulation Results764

Appendix D.1 Setup765

In simulation, we ran our method, the three baselines (RL, LLM, random), and our method’s766

four ablations (no pH,t estimation, no plan hierarchy, no R-initiative dialog, and no H-initiative767

dialog) on eight different settings of parameterized humans in simulation. These eight settings768

were a cross product of 2 dialog mood settings (positive and negative) and 4 ground-truth p̃H,t ∈769

{0.0, 0.3, 0.7, 1.0} settings (following the notation introduced in Appendix G, where the p̃ denotes770
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the ground truth probability while the plain p denotes our estimate). 10 trials were run for each771

method in each of the eight settings for the parameterized human.772

Appendix D.2 Simulation Experiments773

In Table 2, we show the results of our method in simulation version of our real-world Task 1. Our774

method performs better than baselines especially on scenarios where p̃H,t is low, because our method775

is able to take initiative in dialog, such as to propose ways to split up steps to make them more776

achievable with the simulated human. The averages in Table 2 are plotted in Fig. 4.777

Table 2: Simulation Task 1 Performance across different p̃H,t Values and Language Sentiments.
Human Parameters (Mood, p̃H,t)

Method Metric Positive Mood Negative Mood Avg. (%)0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0

Ours
Success Rate 3/10 6/10 9/10 10/10 1/10 4/10 9/10 9/10 63.75
Num Plan Steps Completed 3.6/5 4.2/5 4.8/5 5.0/5 3.2/5 3.8/5 4.8/5 4.5/5 84.5
Prop. Plan Steps done by Human 0.1667 0.2381 0.3125 0.4 0.03125 0.1579 0.354 0.377 25.47

LLM Baseline
Success Rate 2/10 2/10 4/10 7/10 3/10 6/10 6/10 6/10 45
Num Plan Steps Completed 3.4/5 3.4/5 3.7/5 4.4/5 3.6/5 4.2/5 4.0/5 4.2/5 77.25
Prop. Plan Steps done by Human 0.0588 0.05882 0.2162 0.1591 0.1111 0.1428 0.175 0.166 13.6

Random Agent
Success Rate 2/10 5/10 6/10 7/10 2/10 3/10 6/10 7/10 47.5
Num Plan Steps Completed 3.4/5 3.5/5 4.0/5 4.4/5 3.4/5 2.8/5 4.0/5 4.4/5 74.75
Prop. Plan Steps done by Human 0.1176 0.4286 0.525 0.7045 0.1176 0.2143 0.525 0.7045 41.71

RL
Success Rate 0/10 1/10 4/10 10/10 0/10 1/10 4/10 10/10 37.5
Num Plan Steps Completed 2.4/5 2.3/5 3.4/5 5.0/5 2.4/5 2.3/5 3.4/5 5.0/5 65.5
Prop. Plan Steps done by Human 0.125 0.1739 0.4412 0.54 0.125 0.1739 0.4412 0.54 32.0

Only R Init
Success Rate 0/10 3/10 9/10 10/10 0/10 5/10 9/10 10/10 57.5
Num Plan Steps Completed 3.0/5 3.6/5 4.8/5 5.0/5 3.0/5 4.0/5 4.8/5 5.0/5 83
Prop. Plan Steps done by Human 0.0 0.1111 0.3542 0.4 0.0 0.225 0.354 0.4 23.05

Only H Init
Success Rate 0/10 0/10 0/10 0/10 2/10 0/10 0/10 2/10 5.0
Num Plan Steps Completed 3.0/5 3.0/5 3.0/5 3.0/5 3.2/5 3.0/5 3.0/5 3.3/5 61.25
Prop. Plan Steps done by Human 0.0 0.0 0.0 0.0/3.0 0.1875 0.0 0.0 0.1212 3.86

Ours w/o p_help
Success Rate 3/10 5/10 9/10 10/10 2/10 3/10 9/10 9/10 62.5
Num Plan Steps Completed 3.6/5 4.0/5 4.8/5 5.0/5 3.4/5 3.4/5 4.8/5 4.7/5 84.25
Prop. Plan Steps done by Human 0.1667 0.3 0.3333 0.38 0.1176 0.2059 0.3125 0.4468 28.29

Ours w/o Plan Hier.
Success Rate 2/10 4/10 7/10 10/10 0/10 3/10 4/10 8/10 47.5
Num Plan Steps Completed 3.4/5 3.8/5 4.0/5 5.0/5 3.0/5 3.4/5 3.6/5 4.2/5 76
Prop. Plan Steps done by Human 0.0588 0.1316 0.25 0.24 0.0667 0.1176 0.1944 0.2381 16.22

Appendix E User Study Details778

Appendix E.1 User Instructions779

Users were read the following instructions at the beginning of the study. (Instructions here are shown780

for task 2.)781

1. Thank you so much for coming for our user study! We wanted to remind you to review the782

RIS before proceeding, and that you may voluntarily opt-out of the study at any time.783

2. You are working with the robot to perform the task of assembling the toy car. You must use784

the hexagonal drill bit to screw in the wheels, and the phillips drill bit to screw in the seat785

and the window. [Demonstrate these steps to the human]. You and the robot operate on a786

shared understanding of the plan. [Read the 4 high-level steps of the plan tree for this task.]787

3. Our goal is to simulate a home robot setting, where the human (you) are relatively busy788

with your own tasks, and once in a while you provide physical assistance and talk to the789

robot. So you are free to do work during each trial.790

4. Once the robot asks you to do a step, and you accept, you must finish that step successfully.791

5. We will perform 2 trials, each of a different method.792

6. Both you and the robot can do a subset of the steps in the plan. You will communicate with793

the robot to determine who does what steps.794

7. These are the objects you will work with during the task. I will move them now to their795

initial positions where they will start at the beginning of each trial. [Move objects to initial796

positions.]797
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8. For safety, I will gate-keep each of the robot’s physical actions. In other words, the actions798

are generated by the robot itself, but they will be displayed on the laptop screen with a799

confirmation message, and I can either allow that physical action to be executed by the800

robot, or block the action from being executed if it brings the robot to an unsafe location.801

9. The robot will stay on the TV side of the coffee table, while you will sit on the couch and802

stay on the couch side of the coffee table.803

10. You are free to get up off the couch if you want to volunteer to perform steps that involve804

going to the sink or shelf, but you can only go when the robot is stationary and waiting on805

the other side of the coffee table. Steps are done in sequential order; our system doesn’t806

support parallelization (agents working simultaneously).807

11. You will be communicating to the robot through this headset. We will perform a mic-check808

now to make sure it can pick up your voice. [Do mic check.]809

12. Now, this is what the robot will sound like when it talkes to you. [play audio sample of the810

robot.] Try responding to it, and I will see if it can hear you.811

13. The systems today can handle different kinds of dialog. (1) refusal/acceptance, (2) task812

allocation, such as (“Could you pour the package in the plate later?” Or: “I can pour the813

package onto the plate later.”), (3) silence—you don’t need to respond to the robot every814

time, and (4) a proposal to split up adjacent steps, such as “Please bring me the drill so that815

I can put on the wheels.” You may engage in any of these types of dialog, and the robot816

may also engage in them when communicating to you.817

14. Do you have any questions before we start? I will let you know when each trial begins and818

ends. Sometimes trials may end prematurely.819

Appendix E.2 Success Rate820

Task success at each step is measured by whether the end state has been achieved. For instance,821

a pickplace(obj, furniture) step in the plan is marked as successfully completed if the obj822

ends up on the furniture after execution. This means that primitive errors (such as a pickplace823

operation that accidentally moves the object off of the furniture as the arm is retracting) count as a824

failed execution.825

Appendix E.3 Failure Analysis826

In the real world, the main sources of error of our method were as follows:827

1. Task 1: Cut and Pour Package into Bowl. 3 failed trials out of 6.828

• 2 primitive errors (pouring missed the bowl, package grasping pressed into the shelf829

and wasn’t placed properly)830

• 1 perception error831

2. Task 2: Assemble Toy Car. 2 failed trials out of 6. 1 failure that was rectified by human.832

• 1 dialog error: user wanted robot to perform a non-step plan outside of its capabilities,833

and refused when robot said it wasn’t able to perform it834

• 1 primitive error: robot did not release its grasp of the drill.835

• 1 metaplanner dialog parsing error836

3. Task 3: Pack Gift Box. 2 failed trials out of 6.837

• 1 primitive error: placed bow on box but bow dropped to floor as gripper retracted838

• 1 termination condition triggered: rejected robot’s help request proposal 3 times in a839

row.840

The main sources of error of the baseline was as follows:841
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1. Task 1: Cut and Pour Package into Bowl. 6 failed trials out of 6.842

• 4 task allocation errors: Allocated the infeasible package opening step to robot itself843

• 2 primitive errors: poured but missed the bowl; tipped over package while placing it844

2. Task 2: Assemble Toy Car. 6 failed trials out of 6.845

• 2 primitive errors: Dropped the drill which fell off of the table when placing it846

• 2 perception errors: Unable to pick out correct place to place the object847

• 1 task allocation error: allocated to put on wheels itself.848

• 1 termination condition triggered: got in a conversational loop with the user.849

3. Task 3: Pack Gift Box. 6 failed trials out of 6. 1 failure that was rectified by human.850

• 6 task allocation errors: 4 tried to put on the lid itself; 2 tried to cut a piece of tape851

itself.852

• 1 primitive error: robot inadvertently dropped the car onto the floor as it was trying to853

place it.854

Appendix E.4 Fault Recovery855

Sometimes, the code produced by the metaplanner is not executable. For fault recovery, the meta-856

planner is automatically re-queried up to 2 additional times to create code. If these attempts also857

produce non-executable code, the most recent dialog from the human is ignored for 2 further, au-858

tomated metaplanner requeries. These re-queries are handled by a try-except block in the iterative859

planner module of MICoBot.860

Appendix F RL Baseline Details861

For our RL baseline which was evaluated in simulation, we trained a hierarchical policy where862

the high-level policy was a task allocator that outputted logits over two classes: 0 (Robot would863

perform current step), or 1 (Human would perform current step). If the logit for 0 were highest, then864

the image observation was passed into the low-level robot policy that decided the discrete physical865

action to take in the world. If the logit for 1 were highest, then the robot asked the human the correct866

verbal action for help on that step. Reward was sparse and only issued if all 5 steps were completed867

in the task, in the proper order.868

We initially trained the RL policy on two simulated human settings: one where the human ground869

truth p̃H,t = 1.0, and another where p̃H,t ∼ U [0, 1]. We were unable to obtain policies with any870

non-zero training returns after thousands of iterations on the latter setting, so we only reported results871

on the former setting, which explains why the RL policy does not perform well when p̃H,t is low.872

Appendix G Additional Experimental Investigations873

In addition to those discussed in Section 5, we explore the following additional experimental ques-874

tions.875

(4) How important is pH,t estimation at adapting to human collaborators? A correct estimation876

of the true likeliness of a human to help, p̃H,t, is critical: overestimating causes MICoBot to overly877

rely on human effort, potentially decreasing user satisfaction, while underestimating it lowers task878

success outcomes if the robot needs to rely on its low-success-rate skills instead of asking the human879

for help.880

First, we examine in Fig. 8 a real-world instance of how well MICoBot can estimate the probability881

of the human helping on the next turn during the course of a user study. After the robot’s help882

request was rejected twice in a row (top 2 red horizontal stripes), the robot’s helpfulness estimate883

of the human plummets to 0.05. However, after the robot explains its incapacity to use scissors,884

the human accepts the next two help requests (in green) and the robot’s helpfulness estimate of the885
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Estimated Probability of Human Helping on Robot's Next Request

H: Ok, I will do that now.

R: Could you please open the package with scissors 
and place it on the coffee table? Thank you!

H: Thanks for bringing the scissors.

R: [brings scissors to coffee table.]

R: Great! I'll happily place the scissors on the coffee table. 
Thank you for taking care of opening the package with the scissors!

H: Okay, if you bring the scissors, 
then I will open the package with the scissors.

R: I'm happy to place the scissors on the coffee table for you! 
However, I'm not able to open the package with the scissors 

and place everything on the table. 
Let me know if there's anything else I can do to assist!

H: I think you should bring the scissors 
and then you should use the scissors to open the package.

R: Let's collaborate to open the package! 
I can place the scissors onto the coffee table, 

and you can then use them to open the package. 
Thank you for your help!

H: There are no scissors on the coffee table.

R: Could you please open the package using the scissors 
on the coffee table? Thank you so much!.

H: Good job.

R: [brings bowl and package to coffee table.]

H: Please cut the package and pour it into the bowl.

Human Helpfulness Estimate Over Time
Probability Estimate
Human Rejection
Human Acceptance

Figure 8: From a real-world user study: MICoBot’s pH,t estimation (blue line) reacts in real time to
the human’s rejections (red), acceptances (green), and encouraging remarks. All dialog is shown as
y-labels. Green text denotes robot actions/dialog, and blue text denotes human dialog. The timestep
t increases from top to bottom on the y-axis.

human increases to 0.8. Note also that simple comments from the human, such as a “Thank you” or886

“good job,” also had positive effects on the estimated pH,t, because the robot inferred that the human887

was in a more positive mood and hence more likely to help. This graph demonstrates that MICoBot888

is fairly competent at estimating a reasonable pH,t value when calculating the human q-values for889

each step in the plan.890

To analyze the effect of a good pH,t estimate on task allocation, we demonstrate through a controlled891

toy-setting in simulation in Table 3 exactly how the optimal task allocation changes as the robot892

discovers more information about the human’s willingness to help. Steps that are optimally allocated893

to the human are shown in blue , and steps optimally allocated to the robot are shown in green .894

The Q-values of the selected agent in each cell are shown in parentheses. Table 3 depicts a rollout on895

the open and pour package into bowl (Task 1) in simulation, which has the same 5 step plan as the896

real-world Task 1 described in Appendix Appendix A. Unlike our real-world experiments, where897

α = 10, here we set α = 0.3 so that human effort is considered around 3× cheaper than robot898

effort, which causes every task to initially get allocated to the human (at t = 0). Additionally, we899

program the human to always reject the robot’s first help request on a specific step, but to help the900

robot when it asks a second time.901

As stated earlier, initially (t = 0) all steps are allocated to the human. However, the human rejects902

the initial help request from the robot, causing the pH,t estimate to drop to 0.25, increasing the903

Q-values of the human and switching the allocation of all but steps 2-3 to the robot after just two en-904

vironment timesteps (t = 2). (Recall that the robot cannot perform step 3, and due to the hierarchical905

structure of our plan, steps 2 and 3 are bundled together as an abstract step.) This demonstrates that906

having a good pH,t estimate is crucial to adapt to the human’s willingness to help. Since the human907

demonstrated initial unwillingness to help, MICoBot quickly learned to decrease its pH,t estimate908

and allocate many more of the tasks to itself by the second timestep. Had MICoBot not properly909
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Table 3: Computed Best Task Allocation (and Agent Q-values) During a Sim Trial on Task 1.
Env. Timestep Step 1 Step 2 Step 3 Step 4 Step 5

t = 0 H (-9.6) H (-7.2) H (-13.2) H (-2.4) H (-2.4)
t = 2 R (-13.0) R (-9.0) H (-13.2) H (-4.8) R (-1.0)
t = 6 – R (-12.0) H (-13.2) H (-4.8) R (-1.0)
t = 9 – – H (-13.2) H (-4.8) R (-1.0)
t = 16 – – – – R (-3.0)

estimated pH,t, it would have repeatedly asked the human for help even if the human was extremely910

unwilling to, leading to worse user satisfaction in working with the robot.911

Appendix H Further Connections to Prior Work912

Appendix H.1 Agents with Both Physical and Verbal Actions913

MICoBot relies on a heterogeneous action space that includes interacting with the physical world914

and generating freeform dialogue to a human collaborator. Prior works have developed policies915

with a combined physical and verbal action space through RL [44, 45] or IL (imitation learn-916

ing) [46, 20]. Research on language emergence in multiagent systems [47, 48] has also examined917

how cooperative agents learn to communicate through latent representations or natural language918

when performing simulated robotic tasks [49–53]. However, these works are typically limited to919

simulated domains, where action spaces, and task dynamics are highly abstracted or simplified.920

They often rely on limited communication protocols without integrating grounded task structure,921

rich human preferences, or real-world execution constraints. In contrast, MICoBot leverages an922

LLM to generate freeform, grounded dialogue within a shared task context, enabling fluid mixed-923

initiative interaction and reasoning over both verbal and physical actions in real-world scenarios.924

Appendix H.2 Natural Language and Robotics925

Our work sits at the broad, growing intersection of natural language and robot learning. We refer926

the reader to various lines of work upon which different modules of our method are based, in-927

cluding language-conditioned robot policies [54–64], LLMs as task planners [65–68], code-based928

policies [69–71], hierarchical policies [72–74] and planners [75, 76], vision-language representa-929

tions [77–79] for robotic control [80–82], and language-based reward shaping for RL policies [83–930

90].931
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